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STABILITY OF THE PLANE WAVE FRONT OF FLUID EVAPORATION 

E. B. Levchenko and A. L. Chernyakov UDC 532.70 + 535.211 

An evaporation wave is propagated in the bulk of a substance subjected to a powerful 
radiation flux in a condensed medium. In those cases when the domain thickness in front of 
the wave front heated because of heat conduction is small compared with the characteristic 
dimensions of the system under consideration, the realization of a quasistationary regime 
for which the velocity of wave front motion is determined by the instantaneous value of the 
energy flux density absorbed in the medium, is generally possible. In fact, the process of 
material rupture under sufficiently large energy flux intensities (for Q > 105-106 W/cm 2 for 
metals) is accompanied, asa rule, by different nonstationary phenomena such as self-oscilla- 
tions in the gas flow, ejection of substance in the form of drops, etc. [i], which apparently 
indicates instability of the quasistationary evaporation mode. 

In this paper the stability of the plane fluid evaporation wave front considered as the 
surface of discontinuity of the thermodynamic functions of the substance, is investigated. 
An analogous problem in the theory of slow combusion was investigated by Landau [2], who also 
discovered the instability mechanism of a plane chemical reaction wave associated with the 
development of vortical disturbances in the flux of combustion products. In application to 
the process of substance evaporation by powerful radiation flux, the mentioned instability 
mechanism turns out to be decisive for the development of fluctuations of a front with wave- 
lengths commensurate to the diameter of the radiation focusing spot. A substantial feature 
of the evaporation process, because of which results obtained in the theory of slow combus- 
tion [2, 3] are not directly applicable to the latter, is the high velocity of vapor escape, 
which is commensurate with the speed of sound in a gas. Taking account of the vapor com- 
pressibility, which is necessary in this case, results in a change in both the conditions of 
origination and the nature of the development of the instability of the plane fluid evapora- 
tion wave front. 

Let us select a reference system in which the plane evaporation wave front is at rest, 
and we direct the Cartesian z axis along the normal to the front so that the domain z < 0 is 
filled with fluid and z > 0 with vapor. In this coordinate system the temperature profile 
is stationary and has the following form in the absence of radiation absorption in the vapor 
during surface evaporation: 

< o, 
T o ( z ) = | T o g ( z ) = c o n s t ,  z > O ,  

Toz = Tos exp \ ~--'~-1 ~ • ~l -- vz,/Zz ' 

where Q is the energy flux density, ~ is the coefficient of radiation absorption, x~ = 
P~cTxl is the heat conduction, and c7, p7 is the specific heat and density of the fluid. The 
surface temperature Tos and the flow velocity v~ are determined from the energy conservation 
law 
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dr~ ~=0 ( t + l 2) 
-- • ~ = piv~ k w l e  + ~7- v'g -- --f- vl , 

where  kW~g i s  t h e  c h a n g e  i n  e n t h a l p y  d u r i n g  t h e  f l u i d - v a p o r  p h a s e  t r a n s i t i o n ,  and  t h e  e q u a -  
t i o n  f o r  t h e  e v a p o r a t i o n  r a t e  i s  

X ' T  ' - - C  e -=/Ts v z = X ( r 0 s ) ,  s l =  0 , 

where  t h e  p r e e x p o n e n t i a l  f a c t o r  Co -~ c o n s t  e q u a l s  t h e  s p e e d  of  s o u n d  i n  t h e  f l u i d  i n  o r d e r  
of m a g n i t u d e ,  and  u i s  t h e  h e a t  o f  e v a p o r a t i o n  p e r  a tom.  

L e t  us  i n v e s t i g a t e  t h e  s t a b i l i t y  of  t h e  p l a n e  e v a p o r a t i o n  wave f r o n t  w i t h  r e s p e c t  to  
s m a l l  d i s t u r b a n c e s  f o r  w h i c h  we l i n e a r i z e  t h e  E u l e r  e q u a t i o n  (we n e g l e c t  v i s c o s i t y )  and  t h e  
h e a t  c o n d u c t i o n .  C o n s i d e r i n g  t h e  ga s  m o t i o n  a d i a b a t i c ,  and  t h e  f l u i d  i n c o m p r e s s i b l e ,  we o b -  
t a i n  t h e  s y s t e m  o f  e q u a t i o n s  

r 
t i 

Ov'z Ovz I VPl, divvz -- 0; ( l a )  z < ~ : o-7- + vz Oz p~ 

t p 

~ ~ 0rz , dg0~ o , 
O t  , t'z 7 7  + t ' tz~7z : Z z v ' T t ;  ( l b )  

i / 

z > ~: 0 %  Or' v __ 1 , 
O-7 + Vg 7z pg VPg ,  ( 2 )  

i 

' O ' , aS~ OS; 
~PVa-F + vg VPe T p g d i v  ve - -  - $ F + v g - ~ F  = 0 '  

where  r = ~(x ,  t )  i s  d i s p l a c e m e n t  o f  t h e  f r o n t .  The p r e s s u r e  c h a n g e  p~ of  t h e  v a p o r ,  w h i c h  
we c o n s i d e r  an  i d e a l  g a s ,  i s  r e l a t e d  to  t h e  d e n s i t y  and  e n t r o p y  d i s t u r b a n c e s  by t h e  r e l a t i o n -  
ship 

t i ! 

P g / P g  ~- ?Pc~Pc 6-  S e / c v g ,  Sg  = Cvg In ( p f  oVg), (3) 

where  u = Cpg/CVg i s  t h e  a d i a b a t i c  i n d e x ,  and  pg,  pg ,  Sg a r e  t h e  u n d i s t u r b e d  v a l u e s  o f  t h e  
v a p o r  d e n s i t y ,  p r e s s u r e ,  and  e n t r o p y .  The gas  t e m p e r a t u r e  i s  f o u n d  f rom t h e  e q u a t i o n  of  s t a t e  

r ! t 

Ta/rg = P f  P g -  P f t ' g -  ( 4 )  

The mass, momentum, and energy conservation laws on the wave front for z = ~(x, t): 

(Pz , 0~ , , , - -  p g ) - - ~  = pIL'l: - -  pgC:gz - -  pgug; (5) 

0r ' ' ' 9 ' 0 ' ' "z a '<- 
(Plc'Z - -  l)gc'g) 7 = gr (pz - -  Pg) ~-  Pz - -  Pv + -pzz.'l=vt= - -  .pg~,at, g~ - -  pgcg - -  c ~ ;  (6)  

O z - 

pzsz + -5-., - -  Pc% - -  W t~';t"~ ~ = ,ot,,z~ wl ~ = 2  vl + 

q-pluz(t 'IL'l~@Wl -- p<qvg~ w ~ , - T - ~ t , g  --pgv e tog q - - ~ - v  - -  

O Fox ) , , (OT I 2 

the condition of equality of the tangential velocity components that follows from the con- 
tinuity of the tangential components of the momentum flux density 

v ~  + ('el -- v e) 7 7  = v~.~, (8) 

as well as the relationship connecting the velocity of wave front displacement with the 
change in the fluid evaporation rate 

a~ , " ,  X,  h u , Ot --  v z ~ - - X ,  = ~-g- Ts (9)  
To8 

w i l l  be  t h e  b o u n d a r y  c o n d i t i o n s  f o r  ( 1 ) - ( 4 ) .  The f o l l o w i n g  n o t a t i o n  was u s e d  i n  ( 5 ) - ( 9 ) :  g 
is the acceleration of gravity, and S~,g, W~,g are the internal energy and enthalpy of the 
fluid and gas. 

The change in gas temperature T~ (z = 0) and fluid surface temperature T~ are intercon- 
nected by the relationship that follows from examining the kinetics of the evaporation proc- 
ess and the gasdynamic regime of vapor escape, which can be written in the general case in 
the following form 
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# v t 

Ts -- a T~. 4- b P-& (10)  
TOS ~ Pg ' 

where the coefficients a and b should be determined from the solution of the kinetic equa- 
tion in the transition layer. In the particular case of self-similar escape of vapor, a = 
i, b = 0 as is shown in [i]. 

Utilizing (5), (9) and (i0), we reduce the energy equation to the more convenient form 

~ (Or~ d~ro~l , 
v-T\-~z + ~ / - ] - ~ o (  T'  @ ~ ) = 8 o T o s  p~, (ii) 

where 

czr0s , =2- . c~ ar0s 

b Cp. e T~, v~ 
8o ---- - + - -  

a c I Tos ClToS" 

We shall seek the solution of (i)-(4) in the form 
, , , e~hx+~t 

Vl,g, Pl,g, ~, ~)g ~ 

We o b t a i n  e x p r e s s i o n s  f o r  t h e  f l u i d  v e l o c i t y  and p r e s s u r e  f r o m  (1)  by  o m i t t i n g  t h e  common 
e x p o n e n t i a l  e i k x + 3 t  

v~x : ikcpze ~z, v~z : kcp~e ~z, (12) 

p~ = - -  p~(kv~ + ~) %e ~ .  

From (ib) we obtain an expression for the fluid temperature, which substituted into (ii) 

r 

y i e l d s  t h e  s u r f a c e  t e m p e r a t u r e  Ts = TI (0) 4- ~'dd r~ : 

r 

Ts -- Ts 4- O~ ~oros 
Pg ~o § ~t~t/vl ' 

x,.~ ~=~ ~+,/~o~,, ,, ,,e(e(. 22_! iQ, ,~r , ) ) / ,  Ts = ~0 / - o  f (~) 4- + f k + + 
t • ;~, + go%ih V t xz ~ • (hxr ' - -  l~) J 

where we have introduced the function 

(13) 

( .,, k,_ 
F ( t ) =  t ~ + ~ - t  - -  ~ /  1 ~-~vl-~o/h , 

z,,--- ~ + v 4 ~  4- ~-~" 
S o l v i n g  t h e  e q u a t i o n  f o r  t h e  v a p o r  ( 2 ) ,  we o b t a i n  

q ! 

Pe _ De-Xaz_  I C e - X l z  ' f_6< == ?De-Za z, 
Pg ~ Pg 

T' g --  ( 7 -  1 )De  -%~ 4- __1 C e - ~  
Tg "? 

, Q- X3% ve~ = - m -~-_- k~ De -~:~: + X._,,4e - ~ ,  

(z4) 

where 
" ,) 

% • csl (c~- ~) k ~ + ~ 
�9 2 / 

o 

The s i g n  i n  f r o n t  o f  t h e  r o o t  i s  s e l e c t e d  f r o m  t h e  c o n d i t i o n  o f  t h e  s o l u t i o n  d e c r e a s i n g  
' ' and T~ in (lO), we express the coeffi- as z § ~. Substituting the expressions for pg, Tg 

cient C in terms of D and TS: 
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~S a(V-- t ) + b  D/ (15) 
C = - -  ? - -  ( a - - b )  T o s @  " a - - b  J" 

In obtaining (15) 
can be neglected in the expression for T$ in (13). 

Substituting (12)-(14) into the boundary conditions (5), (6), 

tem of linear algebraic equations 

( ~ a v ' e  ) v~ Ts 
Q~(Pz- -Pg) :k~z ,P~- -P~  s qT--~ D + ikd + .  

2 3 -- k a - -  b To8 

! 

it was assumed that ~o ~ ui/T~ >>i, here the components proportional to pg 

(8), (9), we obtain a sis- 

~--~D; (16) 

(Q --  kc,) p,q~, + (p, - -  pg) g~o + o&'~o = 2p,v, ( - -  ikA + ;% 7"av ~ -  ] ~ D)  4- a -- b Tos' (17) 

- .e -W xaq, (18) 

A 3 --  
u ~' (19) 

~2~o = k(~ --  ~,~ 77- Ts. 
Tos  

E l i m i n a t i n g  the  c o e f f i c i e n t s  A and D from (16) and (18) and s u b s t i t u t i n g  them i n t o  
obtain 

. ( 2 0 )  

+ ~o~ + 2 k ~ , , ( ~ - - ~ , ) N - - ~ k  ' , ~ - - ~  - + - N ( ~ - - ~ 0  / ( ~ )  ~o = 0 ,  

(17) , we 

where  (og) 
+')o= i - - - ~ l  gk + a---- 

f ( ~ s ) ~  2 (~3--k2X21)(X3 ~'2) a~ ()hl - k 2 ~ - 1 ~ [ ~  - -  

~ -  k2 ~  ~ 4:3 x ~ -~  k~ o -  b 

The c o m p a t i b i l i t y  c o n d i t i o n  f o r  the sys tem (19) and (20) governs the dependence o f  the i n -  
crement  s on the  wave number k o f  the d i s t u r b a n c e .  

Let us first consider the limit case when the last term in the right side can be ne- 

glected. Substituting LEo = k~gL in (20), we obtain the dispersion equation 

~ + ~k~,~ ( /(~) - ~) + ~ ( ~  + l~%~,g ( / ( h )  - 2)) + k~V~g (vg - @ (2 - / (h)) = o. ( 2 l )  

This equation simplifies substantially in the limit case Vg<< cs, Vg = cs, Vg >> c S. In the 
subsonic vapor flow mode, the function f(13) equals f ~ 2 + 2/kVg approximately, and (21) re- 

duces to the form [2] 

Q++ 1 ~- + 2~kvl § % -- -- 

For kv (v /v )i/2 > wo(k) an aperiodic instability occurs in the plane evaporation wave front. 
g l gi/2 

If kvg(v~/vg) >> wo(k) then the instability increment equals 

= k % ( v / v g ) u t  

In the self-similar vapor escape mode the condition Vg = c S is satisfied. In this case 
f(X3) ~ fo = ((3 + y)a -- 3b)(a(l + y) -- b) -~ (we later assume a > b), and the dispersion 

equation is reduced to the form 

�9 (~) ----- ~a @ Q2kv z (f0 - -  1) + Q ( ~  - -  k~v,v~ (2 - - /0 ) )  + k3vgvt (v~ - -  vl) (2 - - /0 )  = 0. (22) 

This equation has a root with Re ~ > 0 upon satisfying the condition 

, , 2 - / o  = k-v,J'r /o). k++vg(v~ - -  c 0 7 - ~ - - - F > %  --  ~ , _ 

For wo(k)<< (2- fo)i/3kvg(V~/Vg) I/3 we have 
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Q ~  = --~e(vd2 --/o)/Vg)'/a, 

Q2,a = -q- i ~ __ W ]~'Vg(Vt (2 --/o)/V~) '/a. 

As ~o § ~ the expressions for the roots have the form 

kav~gVz 
~ = - -  ( 2  --/o) 2 

~0 o 

a~.a:-: ~+ ico o i - - ( 2 - - / o )  2 - - ~ o  j +]"~:'z 2 ~ /o) 2o~ j 

(23) 

(24) 

Therefore, in contrast to the case of the subsonic vapor flow regime, the plane evaporation 
wave front turns out to be absolutely unstable for Vg = c S since, for example, the condition 
vg>>min(wo(k)/k) is always satisfied in laser experiments. For small ~o(k) the instability 
increment equals Re ~ ~ kvg(v~/vg)~/s in order of magnitude and exceeds the increment for an 
incompressible fluid. 

For a substantially supersonic gas flow regime we have 

kcs a~ )--1 

The signs (+) and (--) correspond to two different values of the root in the expression (14) 
for Z3. For definiteness we select the sign (+). The complex-conjugate expression is ob- 

tained when the other sign is selected for ~. In case ~ < kc s we have f(Z3) ~2 a ia? 
Q 

- -  - - b  kc 8 ' 

and we o b t a i n  f rom (22) 

k2v~ vl a? 

c s a ~ b  + + c s a - - b  

This equation always has a root ~ > 0. For ~o << kvg(v~/Cs)~/2 the instability increment 
( vl  ya ) ~/~ 

equals Re~ = kvg 2c s a ~  b , which also exceeds the increment in the incompressible fluid. 

The expression obtained is valid under the condition Cs/V ~2 >>Vg >> c S. In the other limit 
case Vg >>Cs/V 7 f(%3) ~o 1 and the dispersion equation reduces to the form 

+ (O,o - + : o. 
The i n s t a b i l i t y  i n c r e m e n t  e q u a l s  Re ~ = ( 1 / 2 ) k v g ( v ~ / v g )  ~/a  i n  t h i s  c a s e  f o r  mo << k v g ( v ~ /  
Vg) ~/~. 

It is therefore seen that for vapor efflux velocities commensurate with the speed of 
sound, the plane evaporation wave front turns out to be absolutely unstable. 

Let us investigate the influence of the temperature disturbances in the fluid for the 

case of self-similar vapor escape when Vg = c S. Considering the term with TS in (19) as a 
small addition, we find the correction to the natural frequencies of the system. Substitut- 
ing ~ : ~o + ~ into (19) and (20), we obtain 

t dz dz 2 ~ fl 6 d,P "/ '  __,tJ0 F ( p ) � 9  + F k +  + 
d~2 '--'o /'os[ • ~ ;h+~o"z'Tz Zl L ~Q ~-t 

• ("z /~ l -- ~) i "". (p, <II 
In the limit case of surface absorption, (25) simplifies for ~ > > ~  vTu2/xzT 2 For 

o S �9 

kvg >> I~o]>> kv7 we obtain from (25 

'~ 1 "> ( "* (%) 
6 • d~ ] h l +  ~oV/Xz 

For  ~o << I~ I ~ k v g ( V ~ / V g ) ~ / 3 ~ o  t h e r e  i s  g i v e n  ( 2 3 ) ,  and t h e  c o n d i t i o n  o f  s m a l l n e s s  o f  t he  
temperature additions ~ << ]~o I has the form 

(25) 

(26) 
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r~ ~0 + (X,I% I)~'"/u~ 
which  i s  known to  be s a t i s f i e d  u n d e r  t h e  c o n s i d e r e d  c o n d i t i o n s  of  f l u i d  e v a p o r a t i o n  by a 
p o w e r f u l  r a d i a t i o n  f l u x .  

In  t he  o p p o s i t e  l i m i t  e a s e ,  when i~o ~- ~o >> k v g ( v l / v g )  1 /3 ,  we o b t a i n  f rom (26) 

I* ~a:~/o (27) 
6 

r0s ,% (t0 + '') 

For <o << (X~Wo/V{)~/2 this expression agrees to the accuracy of the factor fo with the ex- 
pression for the instability increment of capillary waves obtained in [4]. The complete ex- 
pression for the natural frequency is given by the sum of the expressions (24) and (27). 

The results obtained above indicate the importance of taking account of the vapor dy- 
namics. The method of describing the phase transition region as a hydrodynamic discontinu- 
ity is valid in considering disturbances with wavelengths substantially greater than the 
thickness of the transition region, i.e., for k~ ~ kavg/vT<< i, where ~ is the particle mean 
free path in the gas, and a is a quantity on the order of the interatomic spacing in the 
fluid. For kl ~ 1 the kinetic equation must be used to describe the vapor dynamics. More- 
over, in considering shortwave disturbances it is necessary to take account of viscous damp- 
ing in the fluid since the condition vk2<<~o can be spoiled. 

2 2 2 In the region of large energy fluxes when u vz/Tosx ~ >>Wo, kvg(v~/Vg) I/3 all the hydro- 
dynamic motions become insignificant and the dispersion equation reduces to the form 

�9 9 

I [xo_( dT~ _ d-Tol 
~1 dz dfi 

0 , v~u /"(~t) @ ;~t if- ~oh/Xl  - -  O, ( 2 8 )  

i n v e s t i g a t e d  i n  [ 5 ] ,  where  i t  i s  shown t h a t  f o r  Q > Qth r  t h e  e x p r e s s i o n  (28) has  a s o l u t i o n  
w i t h  ~ > 0 where  t h e  maximum i n s t a b i l i t y  i n c r e m e n t  i s  a c h i e v e d  f o r  k ~ ~ and e q u a l s  ~max ~ 
v~uU/x~ToUS i n  o r d e r  of  m a g n i t u d e .  

Therefore, the main mechanism resulting in instability of the plane fluid evaporation 
wave front in the long-wavelength spectrum range is the mechanism proposed by Landau which 
is related to the vortical nature of the vapor motion. In contrast to the theory of slow 
combustion, instability development is possible in the evaporation wave at vapor effluxveloc- 
ities close to the speed of sound, for any energy flux densities, and is not of purely aperi- 
odic nature. 

Instability development can result in a number of physical phenomena already discussed 
in [3-6]. In particular, the hydrodynamic instability considered in this paper can result 
in deformation of the liquid surface under a laser beam. The analogy with the theory of 
slow combustion can apparently turn out to be useful even in the examination of other ques- 
tions associated with the process of evaporation of condensed media by powerful radiation 
flux. Thus, the shape of the cavern for a so-called "dagger" fusion of metals [7] turns out 
to be analogous, from this viewpoint, to the shape of a stationary flame in a tube [3]. 

The authors are grateful to A. A. Vedenov for constant attention to the research and to 
S. I. Anisimov for discussion and useful remarks. 
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